RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1979 Volume 43, Issue 3, Pages 603–627 (Mi im1724)

This article is cited in 5 papers

Class numbers and groups of algebraic groups

V. P. Platonov, A. A. Bondarenko, A. S. Rapinchuk


Abstract: The class number of an algebraic group $G$ defined over a global field is the number of double cosets of the adele group $G_A$ with respect to the subgroups of integral and principal adeles. In most cases the set of double cosets has the natural structure of an abelian group, called the class group of $G$. In this article the class number of a semisimple group $G$ is computed, and it is proved that any finite abelian group can be realized as a class group.
Bibliography: 24 titles.

UDC: 513.6

MSC: Primary 20G25, 20G30; Secondary 10C30

Received: 03.01.1979


 English version:
Mathematics of the USSR-Izvestiya, 1980, 14:3, 547–569

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024