RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1978 Volume 42, Issue 2, Pages 270–304 (Mi im1736)

This article is cited in 5 papers

On the dependence of properties of functions on their degree of approximation by polynomials

E. P. Dolzhenko, E. A. Sevast'yanov


Abstract: Let $f(x)$ be a bounded $2\pi$-periodic function with modulus of continuity $\omega(\delta,f)$; let $E_n(f)$ and $H_\alpha E_n(f)$ be the minimum deviations of $f$ from the trigonometric polynomials of order $\leqslant n$, in the uniform metric and the Hausdorff metric of order $\alpha$, respectively; let
$$ \sigma_n(f,\alpha)=H_\alpha E_0(f)+\dots+H_\alpha E_{n-1}(f). $$
Then
\begin{gather*} H_\alpha E_n(f)\leqslant E_n(f)\leqslant H_\alpha E_n(f)\exp\{(3+2\sqrt2\,)\alpha\sigma_n(f,\alpha)\},\\ \omega\left(\frac1n,f\right)\leqslant\frac{\exp\{(3+2\sqrt{2})\alpha{\sigma_n}(f,\alpha)\}-1}{n\alpha}. \end{gather*}
If $H_\alpha E_n(f)\leqslant c/n\alpha$ as $n\to\infty$, then if $c<\pi$ the function $f$ is continuous almost everywhere; if $c<\pi/2$ it is continuous everywhere, and if $c<1$ we have $f\in\operatorname{Lip}\gamma(c)$, $\gamma(c)>0$.
Approximation by algebraic polynomials is also considered, and some corollaries are given.
Bibliography: 13 titles.

UDC: 517.5

MSC: Primary 41A10, 42A08, 42A20, 42A25, 42A50; Secondary 42A04

Received: 09.11.1976


 English version:
Mathematics of the USSR-Izvestiya, 1978, 12:2, 255–288

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025