This article is cited in
5 papers
On the dependence of properties of functions on their degree of approximation by polynomials
E. P. Dolzhenko,
E. A. Sevast'yanov
Abstract:
Let
$f(x)$ be a bounded
$2\pi$-periodic function with modulus of continuity
$\omega(\delta,f)$; let
$E_n(f)$ and
$H_\alpha E_n(f)$ be the minimum deviations of
$f$ from the trigonometric polynomials of order
$\leqslant n$, in the uniform metric and the Hausdorff metric of order
$\alpha$, respectively; let
$$
\sigma_n(f,\alpha)=H_\alpha E_0(f)+\dots+H_\alpha E_{n-1}(f).
$$
Then
\begin{gather*}
H_\alpha E_n(f)\leqslant E_n(f)\leqslant H_\alpha E_n(f)\exp\{(3+2\sqrt2\,)\alpha\sigma_n(f,\alpha)\},\\
\omega\left(\frac1n,f\right)\leqslant\frac{\exp\{(3+2\sqrt{2})\alpha{\sigma_n}(f,\alpha)\}-1}{n\alpha}.
\end{gather*}
If
$H_\alpha E_n(f)\leqslant c/n\alpha$ as
$n\to\infty$, then if
$c<\pi$ the function
$f$ is continuous almost everywhere; if
$c<\pi/2$ it is continuous everywhere, and if
$c<1$ we have
$f\in\operatorname{Lip}\gamma(c)$,
$\gamma(c)>0$.
Approximation by algebraic polynomials is also considered, and some corollaries are given.
Bibliography: 13 titles.
UDC:
517.5
MSC: Primary
41A10,
42A08,
42A20,
42A25,
42A50; Secondary
42A04 Received: 09.11.1976