RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 3, Pages 571–636 (Mi im1739)

This article is cited in 150 papers

The operator $K$-functor and extensions of $C^*$-algebras

G. G. Kasparov


Abstract: In this paper a general operator $K$-functor $K_*K^*(A,B)$ is constructed, depending on a pair $A$, $B$ of $C^*$-algebras. Special cases of this functor are the ordinary cohomological $K$-functor $K^*(B)$ and the homological $K$-functor $K_*(A)$. The results (homotopy invariance, Bott periodicity, exact sequences, etc.) permit one to compute $K_*K^*(A,B)$ effectively in concrete examples. The main result, concerning extensions of $C^*$-algebras, consists in a description of a "stable type" of extensions of the most general form: $0\to B\to D\to A\to0$. It is shown that the sum of such an extension with a fixed decomposable extension of the form $0\to\mathscr K\otimes B\to D_0\to A\to0$ is uniquely determined by an element of the group $KK^1(A,B)$.
Bibliography: 25 titles.

UDC: 517.98

MSC: Primary 46L35, 46M15; Secondary 46M20

Received: 16.01.1979


 English version:
Mathematics of the USSR-Izvestiya, 1981, 16:3, 513–572

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025