RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1978 Volume 42, Issue 2, Pages 356–378 (Mi im1769)

This article is cited in 30 papers

On conditional distributions of diffusion processes

N. V. Krylov, B. L. Rozovskii


Abstract: For a two-component diffusion process $(x,y)$ on the Euclidean space $R^n$ ($n\geqslant2$), we consider the question of the existence of the density $\pi_{t,s}$ of the distribution $P(x_t\in\nobreak\cdot\,|\,y_\tau,\ \tau\leqslant s)$, $s\leqslant t$, with respect to Lebesgue measure, and we study its analytic properties. We also consider the question of the existence and uniqueness of the solution of the equation for $\pi_{t,t}$ (the filtering equation).
Bibliography: 18 titles.

UDC: 519.2

MSC: Primary 60J60; Secondary 60H15, 60G35

Received: 22.06.1976


 English version:
Mathematics of the USSR-Izvestiya, 1978, 12:2, 336–356

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025