RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 2, Pages 393–415 (Mi im1812)

This article is cited in 4 papers

On a class of biorthogonal expansions in exponential functions

A. M. Sedletskii


Abstract: We consider a biorthogonal expansion in terms of the system $\{e^{\lambda_nx}\}$, where $\lambda_n$ are the zeros of the entire function
$$ L(z)=h_0e^z+\int_0^1e^{zt}k(t)\,dt,\qquad h_0\ne0, $$
and $k^{(m)}(t)$ has bounded variation for some integer $m\geqslant0$, $k^{(j)}(0)=0$ for $j=0,1,\dots,m-1$ and $k^{(m)}(0+0)\ne0$. The function to be expanded has domain $(0,1)$. We describe the sets of convergence (and divergence) of the series for the classes $L^p$, $C$, $\operatorname{Lip}\alpha$, and $V$. The results indicate that the series have properties different from those of ordinary Fourier series; and the difference becomes more pronounced as $m$ increases.
Bibliography: 16 titles.

UDC: 517.5

MSC: Primary 42A60, 41A30; Secondary 30A16

Received: 23.12.1975


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:2, 375–395

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024