RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1975 Volume 39, Issue 1, Pages 149–235 (Mi im1827)

This article is cited in 23 papers

On the asymptotic behavior of the spectral characteristics of exterior problems for the Schrödinger operator

V. S. Buslaev


Abstract: The Green's function $G(x,y;\lambda)$, $x,y\in\Omega$, $\lambda>0$, of the Schrödinger equation $-\Delta_xG+v(x)G-\lambda G=\delta(x-y)$ satisfying a radiation condition at infinity is considered in the exterior $\Omega$ of a convex smooth closed hypersurface $\Gamma$ in $R^m$. The potential is assumed to be a smooth function with compact support. Asymptotic formulas for $\lambda\to\infty$that are uniform in $x$ and $y$ are obtained.
Bibliography: 17 items.

UDC: 517.9

MSC: 35J10, 35P99

Received: 22.01.1974


 English version:
Mathematics of the USSR-Izvestiya, 1975, 9:1, 139–223

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025