RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1978 Volume 42, Issue 4, Pages 807–832 (Mi im1847)

This article is cited in 1 paper

On the coefficients of everywhere convergent series in some rearranged orthonormal systems

G. M. Mushegyan


Abstract: In this paper the author establishes the existence of a series $\sum a_{\nu_k}\cos\nu_kx+b_{\nu_k}\sin\nu_kx$ in some rearranged trigonometric system, which converges everywhere to a Lebesgue integrable function and whose coefficients $a_{\nu_k}$ and $b_{\nu_k}$, $k=1,2,\dots$, are not the Fourier–Lebesgue coefficients of this function. Similar results are established for the Haar system and some other systems.
Bibliography: 17 titles.

UDC: 517.5

MSC: Primary 42C20; Secondary 42C25

Received: 01.03.1976


 English version:
Mathematics of the USSR-Izvestiya, 1979, 13:1, 107–132

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024