RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 4, Pages 805–820 (Mi im1852)

Reduction of differential equations with symmetries

E. M. Vorob'ev


Abstract: A method for constructing group-invariant solutions of differential equations is described. At the foundation of the method lies a reduction of the dimension of the base of a bundle of $k$-jets of functions $J^k(M^n,R^1)$ by means of a passage to the manifolds of orbits of the contact action of the Lie group of partial symmetries of the differential equation. Only the orbits of a certain submanifold of $J^k(M^n,R^1)$ are considered, an extension of an involutive system of first-order differential equations associated with the action of the group.
Bibliography: 7 titles.

UDC: 517.9

MSC: Primary 35A30, 58G99; Secondary 58A20

Received: 17.05.1978
Revised: 07.12.1979


 English version:
Mathematics of the USSR-Izvestiya, 1981, 17:1, 73–86

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024