RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 4, Pages 768–793 (Mi im1865)

This article is cited in 1 paper

Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$

M. M. Malamud, È. R. Tsekanovskii


Abstract: In this article a method of a priori estimates is used to solve an integro-differential equation and to substantially strengthen previously obtained sufficient conditions for the operator $\mathscr Kf=i\int_0^xk(x,t)f(t)\,dt$ to be similar to the operator $\mathscr Tf=i\int_0^xf(t)\,dt$ in the scale $L_p[0,1]$. Criteria for the similarity of $\mathscr K$ to $\mathscr T$ are found for a wide class of kernels which depend on a difference.
Bibliography: 17 titles.

UDC: 513.88

MSC: Primary 47G05; Secondary 45K05

Received: 30.12.1974


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:4, 725–748

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024