RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 4, Pages 868–894 (Mi im1871)

This article is cited in 8 papers

Theorems of Paley–Wiener and Müntz–Szász type

M. M. Dzhrbashyan, V. M. Martirosyan


Abstract: In the paper a new integral representation of the well-known function classes $\mathscr H_2[\alpha]$ ($0<\alpha<1$) is established, which in the limiting case $\alpha=1$ goes into the Paley–Wiener theorem. A Hilbert space metric is introduced into the classes $\mathscr H_2[\alpha]$ ($0<\alpha<+\infty$), and a criterion for closedness of certain systems of functions in these spaces is established. In particular, a theorem of Müntz–Szász type in the complex domain is proved, and a complete intrinsic description is given of the corresponding nonclosed systems.
Bibliography: 9 titles.

UDC: 517.5

MSC: 30A78, 30A86, 30A18

Received: 14.01.1976


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:4, 821–847

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024