RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 4, Pages 895–911 (Mi im1872)

This article is cited in 12 papers

The frequency theorem for continuous one-parameter semigroups

A. L. Likhtarnikov, V. A. Yakubovich


Abstract: The following is proved under certain, not very restrictive, assumptions. For the existence of a bounded linear operator $H=H^*$ such that the quadratic form $\operatorname{Re}(Ax+bu,Hx)+F(x,u)$ is positive definite on $X\times U$, it is necessary and sufficient that the form $F[(i\omega I-A)^{-1}bu,u]$ $\forall\omega\in R^1$ be positive definite, where $A$ is the infinitesimal generating operator of a strongly continuous semigroup in a Hilbert space $X$, $b$ is a bounded linear operator acting from a Hilbert space $U$ into $X$, and $F(x,u)$ is a quadratic form on $X$. Moreover, there exist bounded linear operators $H_0,h$, and $\varkappa$ such that the representation $\operatorname{Re}(Ax+bu,Hx)+F(x,u)=[\varkappa u-hx]^2$ holds. A similar assertion is proved in the “degenerate” case.
Bibliography: 30 titles.

UDC: 519.9+517.9

MSC: Primary 47D05, 93C15; Secondary 93D15

Received: 09.12.1975


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:4, 849–864

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025