RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 4, Pages 937–958 (Mi im1874)

This article is cited in 4 papers

On $(H,k)$-summability of multiple trigonometric Fourier series

L. D. Gogoladze


Abstract: A theorem is proved from which, in particular, it follows that if $f\in L(\ln^+L)^{N-1}$ on $T^N\equiv[-\pi,\pi]^N$, then the multiple trigonometric Fourier series of $f$ and all conjugate series are $(H,k)$-summable almost everywhere on $T^N$ for every $k>0$.
In the case where $f\in L(\ln^+L)^{N+1}$ this result was obtained by Marcinkiewicz (Collected papers, PWN, Warsaw, 1964).
That it is unimprovable, in a certain sense, follows from a result of Saks (On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235–252).
Bibliography: 15 titles.

UDC: 517.5

MSC: 42A24, 42A92, 42A40, 40G05

Received: 05.01.1976


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:4, 889–908

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024