RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 5, Pages 1064–1083 (Mi im1880)

This article is cited in 3 papers

Absolute stability criteria for nonlinear operator equations

A. L. Likhtarnikov


Abstract: Conditions are obtained for the stability in the large of solutions of nonlinear equations of the form
\begin{equation} \frac{dx}{dt}=Ax+bu+f,\qquad u=\varphi(y,t),\quad y=Cx. \end{equation}
Here $A$ is the infinitesimal generator of a semigroup of class $C_0$, the maps $b\colon U\to X$ and $C\colon X\to Y$ are bounded linear operators, and $U,X$ and $Y$ are (generally different) Hilbert spaces. The equations (1) describe a wide class of distributed parameter control systems. The results obtained have the following features:
a) The stability conditions pertain not to an individual system but to classes of systems; the stability holds uniformly in a certain sense for all systems of a particular class (“absolute stability in a given class of nonlinearities”).
b) For some classes of nonlinearities, the conditions are not only sufficient but necessary.
Bibliography: 15 titles.

UDC: 517.9

MSC: 34G05, 34H05, 34K20

Received: 26.03.1976


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:5, 1011–1029

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024