RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1998 Volume 62, Issue 1, Pages 165–200 (Mi im189)

This article is cited in 2 papers

On Frobenius traces

S. G. Tankeev

Vladimir State University

Abstract: In this paper we discuss a certain Diophantine property of Frobenius traces associated with an Abelian variety over a number field $k$ and apply it to prove the Mumford–Tate conjecture for 4$p$-dimensional Abelian varieties $J$ over $k$, where $p$ is a prime number, $p\geqslant 17$, or (under certain weak assumptions) $\operatorname{End}^0(J\otimes\overline k)$ is an imaginary quadratic extension of $\mathbb Q$.

MSC: 14K15, 14G20

Received: 05.03.1996

DOI: 10.4213/im189


 English version:
Izvestiya: Mathematics, 1998, 62:1, 157–190

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024