RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1974 Volume 38, Issue 1, Pages 42–58 (Mi im1891)

This article is cited in 6 papers

Examples of nonhomogeneous quasihomogeneous surfaces

M. Kh. Gizatullin, V. I. Danilov


Abstract: Over a field of arbitrary positive characteristic we construct a nonsingular affine surface $X$ which is quasihomogeneous but not homogeneous. More precisely, we find generators of the group of automorphisms of this surface and show that there exists a point $\xi\in X$ which is invariant under all the automorphisms of $X$, while $\operatorname{Aut}(X)$ acts transitively on the points of $X-\xi$.

UDC: 513.6

MSC: 14J99, 14E05

Received: 08.05.1973


 English version:
Mathematics of the USSR-Izvestiya, 1974, 8:1, 43–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025