RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1974 Volume 38, Issue 1, Pages 59–80 (Mi im1892)

This article is cited in 2 papers

Compact complex homogeneous spaces with solvable fundamental group

D. N. Akhiezer


Abstract: In this paper, complex Lie groups $G$ acting transitively and effectively on complex manifolds $X$ with solvable (nilpotent) fundamental groups are studied. It is shown that if $\pi_1(X)$ is nilpotent, then locally $G=S\times N$, where $S$ is semisimple and $N$ is nilpotent. In the case when $\pi_1(X)$ is solvable, the Levi decomposition of the group $G$ is direct if and only if the stationary subgroup contains a maximal unipotent subgroup of the semisimple part. The question of the existence of transitive semisimple groups on $X$ is considered.

UDC: 513.6

MSC: Primary 57E20, 32C10; Secondary 22E10

Received: 09.11.1972


 English version:
Mathematics of the USSR-Izvestiya, 1974, 8:1, 61–83

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025