RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1974 Volume 38, Issue 1, Pages 127–137 (Mi im1895)

This article is cited in 2 papers

On the representation by Dirichlet series of analytic functions in a closed convex polygonal region

A. F. Leont'ev


Abstract: Let $\overline D$ be a closed convex polygonal region. It is shown that, for any function $f(z)$ analytic in the open region $D$ and continuous together with its first derivative in $\overline D$, a Dirichlet series can be constructed (its exponents depend only on $D$) that converges to $f(z)$ everywhere in $\overline D$ except, possibly, at its vertices.

UDC: 517.5

MSC: 30A16

Received: 15.01.1973


 English version:
Mathematics of the USSR-Izvestiya, 1974, 8:1, 133–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025