RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1974 Volume 38, Issue 2, Pages 294–322 (Mi im1903)

This article is cited in 55 papers

Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles

V. L. Popov


Abstract: We construct models of finite-dimensional linear and projective irreducible representations of a connected semisimple group $G$ in linear systems on the variety $G$. We establish an algebro-geometric criterion for the linearizability of an irreducible projective representation of $G$. We explain the algebro-geometric meaning of the numerical characteristic of an arbitrary rational character of a maximal torus of $G$. Using these results we compute the Picard group of an arbitrary homogeneous space of any connected linear algebraic group $H$, prove the homogeneity of an arbitrary one-dimensional algebraic vector bundle over such a space relative to some covering group of $H$, and compute the Chern class of such a bundle.

UDC: 519.4

MSC: Primary 14C20, 14M15, 20G05; Secondary 14F05, 32M10

Received: 18.04.1973


 English version:
Mathematics of the USSR-Izvestiya, 1974, 8:2, 301–327

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025