RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1974 Volume 38, Issue 2, Pages 418–429 (Mi im1907)

This article is cited in 1 paper

Uniqueness classes for the solution of Goursat's problem

V. M. Borok


Abstract: Uniqueness classes for the solution of Goursat's problem, which consists in giving Cauchy initial conditions for each of the variables $t_i$, $ i=1,\dots,n$, are studied for linear partial differential equations with constant coefficients with two groups of variables: time $t=(t_1,\dots,t_n)$ and space $x=(x_1,\dots,x_m)$. The results obtained generalize a well-known theorem of Gel'fand and Shilov on uniqueness classes for the solution of Cauchy's problem.

UDC: 517.9

MSC: 35G10, 35A05

Received: 16.02.1972


 English version:
Mathematics of the USSR-Izvestiya, 1974, 8:2, 423–435

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024