RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1998 Volume 62, Issue 4, Pages 3–24 (Mi im195)

Improved interpolation theorems for a class of linear operators

E. I. Berezhnoia, V. I. Burenkovb

a P. G. Demidov Yaroslavl State University
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: New interpolation theorems are formulated for the class of operators that map the cone of positive functions into the cone of monotonic decreasing functions. These theorems are based on the concept of the $K^c$-functional. A formula for calculating the $K^c$-functional for some pairs of spaces is suggested. An example of an interpolation pair of spaces is considered in which the cones obtained with the help of Peetre's $K$-functional are different from those obtained using the $K^c$-functional.

MSC: 46M35

Received: 26.02.1997

DOI: 10.4213/im195


 English version:
Izvestiya: Mathematics, 1998, 62:4, 651–671

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025