RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 5, Pages 1066–1114 (Mi im1951)

This article is cited in 25 papers

Interpolation problems, nontrivial expansions of zero, and representing systems

Yu. F. Korobeinik


Abstract: Let $G$ be a convex domain with support function $h(-\varphi)$, and let $\{\lambda_k\}$ be distinct complex numbers. In this paper the author determines when the system $\{e^{\lambda_kz}\}$ is absolutely representing in the space $A(G)$ of functions analytic in $G$, with the topology of uniform convergence on compact sets. In particular he proves the
Theorem. {\it Let $L(\lambda)$ be an exponential function with indicator $h(\varphi)$ and simple zeros $\{\lambda_n\}_{n=1}^\infty$. For the system $\{e^{\lambda_kz}\}_{k=1}^\infty$ to be absolutely representing in $A(G)$ it is necessary and sufficient that either of the following two conditions hold}:
1) {\it The system $\{e^{\lambda_kz}\}_{k=1}^\infty$ has a nontrivial expansion of zero in $A(G)$, i.e. $\sum_{n=1}^\infty b_ne^{\lambda_nz}=0$ for every $z\in G$}. \smallskip
2) $L(\lambda)$ is a function of completely regular growth and there exists a function $C(\lambda)$ of class $[1,0]$ such that
$$ \varlimsup_{n\to\infty}\left[\frac1{|\lambda_n|}\ln\left|\frac{C(\lambda_n)}{L^{'}(\lambda_n)}\right|+h(\arg\lambda_n)\right]\leqslant0. $$

Bibliography: 16 titles.

UDC: 517.9

MSC: Primary 30B50, 30D10, 30D15, 30E05; Secondary 30B60, 30C15, 46A06, 46A45

Received: 12.04.1979


 English version:
Mathematics of the USSR-Izvestiya, 1981, 17:2, 299–337

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025