RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1998 Volume 62, Issue 4, Pages 51–80 (Mi im196)

This article is cited in 5 papers

Real algebraic GM$\mathbb Z$-surfaces

V. A. Krasnov

P. G. Demidov Yaroslavl State University

Abstract: We prove necessary and sufficient conditions for a real algebraic surface to be a $\operatorname{GM}\mathbb Z$-surface. We calculate the Neron–Severi group $\operatorname{NS}(X)$, the Brauer group $\operatorname{Br}(X)$ and the algebraic cohomology group $H_a^1(X(\mathbb R),\mathbb F_2)$, where $X$ is a real projective surface. We also prove Nikulin's congruence for an arbitrary orientable $M$-surface

MSC: 14P25

Received: 20.11.1996

DOI: 10.4213/im196


 English version:
Izvestiya: Mathematics, 1998, 62:4, 695–721

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025