RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 6, Pages 1410–1416 (Mi im1985)

This article is cited in 1 paper

The degree of rational approximation of functions and their differentiability

E. A. Sevast'yanov


Abstract: Denote by $R_n(f,E)$ the least uniform deviation of the function $f(x_1,\dots,x_m)$, defined in a subset $E$ of $m$-dimensional Euclidean space, from the rational functions $R_n(x_1,\dots,x_m)$ of degree $\leqslant n$. It is shown that if $\sum R_n(f,E)<\infty$, then, a.e. on $E$, $f(x_1,\dots,x_m)$ has a total differential. The case $m=1$ was previously treated by E. P Dolzhenko.
Bibliography: 9 titles.

UDC: 517.5

MSC: Primary 41A20, 41A25; Secondary 26B05

Received: 06.05.1980


 English version:
Mathematics of the USSR-Izvestiya, 1981, 17:3, 595–600

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025