RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1995 Volume 59, Issue 3, Pages 3–30 (Mi im20)

Construction of the cotangent bundle of a locally compact group

S. S. Akbarov


Abstract: The existence is proved of “a generalized” smooth structure on the cotangent bundle $T'G$ of an arbitrary locally compact group $G$, turning $T'G$ into a paracompact (possibly infinite-dimensional) smooth manifold. A symplectic form $\omega$ on $T'G$ is constructed, which is naturally related to the Poisson brackets in the algebra of symbols on $G$ and the Lie–Poisson structure in the momentum space $A'(G)$.

MSC: 22D05

Received: 10.11.1993


 English version:
Izvestiya: Mathematics, 1995, 59:3, 445–470

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025