RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1975 Volume 39, Issue 4, Pages 739–772 (Mi im2048)

This article is cited in 2 papers

Local extensions associated with $l$-extensions with given ramification

L. V. Kuz'min


Abstract: Let $l$ be a prime number, $k$ an algebraic number field containing a primitive $l$th root of unity, $S$ a finite set of valuations of $k$ containing all prime divisors of $l$, and $K$ the maximal $l$-extension of $k$ unramified outside $S$.
The paper studies local extensions $K_v/k_v$ for $v\in S$, and the corresponding decomposition subgroups $G_v\subset G(K/k)$. It is proved that in almost all cases $K$ coincides with the maximal $l$-extension of $k$; in particular, this holds if $G_v\ne G(K/k)$. Also, a series of results is obtained on the relative location of the various $G_v$ in $G$, and the group of universal norms from the group of $S$-units of $K$ to the group of $S$-units of $k$ is computed.
Bibliography: 7 items.

UDC: 519.4

MSC: Primary 12B10; Secondary 12B25, 12A35

Received: 18.06.1974


 English version:
Mathematics of the USSR-Izvestiya, 1975, 9:4, 693–726

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024