RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 6, Pages 1231–1251 (Mi im2069)

This article is cited in 2 papers

On homomorphisms of Abelian schemes. II

S. G. Tankeev


Abstract: Let $k$ be a field of algebraic functions of one variable over the field $\mathbf C$ of complex numbers, let $S$ be the complete smooth model of $k$ over $\mathbf C$, and let $\mathscr I_i\to S$ ($i=1,2$) be the Néron models of Abelian varieties $I_i$ over $k$. Suppose that one of the following conditions holds:
1) The minimal models $\mathscr I_i\to S$ admit compactifications whose degenerate fibers are unions of normally crossing smooth irreducible components, and
$$ H^0(S,\mathscr Lie_S(\mathscr I_1)\otimes_{\mathscr O_S}\mathscr Lie_S(\mathscr I_2))=(0). $$

2) The Abelian variety $I_1$ has totally degenerate reduction at a point $v$ of $k$, i.e. the algebraic group $\mathscr I_{1v}$ is an extension of a finite group by a torus.
Then for every prime number $l$ the canonical map
$$ \operatorname{Hom}_k(I_1,I_2)\otimes_\mathbf Z\mathbf Z_l\to\operatorname{Hom}_{\operatorname{Gal}(\bar k/k)}(T_l(I_1),T_l(I_2)) $$
is an isomorphism.
Bibliography: 17 titles.

UDC: 513.6

MSC: Primary 14K05, 14G13, 14F30; Secondary 14K10, 14K30, 14H40, 14D10

Received: 18.11.1976


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:6, 1175–1194

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024