This article is cited in
2 papers
On homomorphisms of Abelian schemes. II
S. G. Tankeev
Abstract:
Let
$k$ be a field of algebraic functions of one variable over the field
$\mathbf C$ of complex numbers, let
$S$ be the complete smooth model of
$k$ over
$\mathbf C$, and let
$\mathscr I_i\to S$ (
$i=1,2$) be the Néron models of Abelian varieties
$I_i$ over
$k$. Suppose that one of the following conditions holds:
1) The minimal models
$\mathscr I_i\to S$ admit compactifications whose degenerate fibers are unions of normally crossing smooth irreducible components, and
$$
H^0(S,\mathscr Lie_S(\mathscr I_1)\otimes_{\mathscr O_S}\mathscr Lie_S(\mathscr I_2))=(0).
$$
2) The Abelian variety
$I_1$ has totally degenerate reduction at a point
$v$ of
$k$, i.e. the algebraic group
$\mathscr I_{1v}$ is an extension of a finite group by a torus.
Then for every prime number
$l$ the canonical map
$$
\operatorname{Hom}_k(I_1,I_2)\otimes_\mathbf Z\mathbf Z_l\to\operatorname{Hom}_{\operatorname{Gal}(\bar k/k)}(T_l(I_1),T_l(I_2))
$$
is an isomorphism.
Bibliography: 17 titles.
UDC:
513.6
MSC: Primary
14K05,
14G13,
14F30; Secondary
14K10,
14K30,
14H40,
14D10 Received: 18.11.1976