RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1971 Volume 35, Issue 4, Pages 922–939 (Mi im2084)

This article is cited in 2 papers

On correct solvability of a boundary value problem in an infinite slab for linear equations with constant coefficients

V. M. Borok


Abstract: Conditions depending on the properties of the polynomials $P(s)$ and $Q(s)$ are found for the correct solvability of the boundary value problem
\begin{gather*} \frac{\partial^2u(x,t)}{\partial t^2}+P\left(\frac\partial{\partial x}\right)\frac{\partial u(x,t)}{\partial t}+Q\left(\frac\partial{\partial x}\right)u(x,t)=0,\\ u(x,0)=u_0(x),\qquad u(x,T)=u_T(x) \end{gather*}
($x\in R_m$, $t\in[0,T]$; $P(s)$ and $Q(s)$ are polynomials in $s_1,\dots,s_m$ with constant coefficients) in various classes of functions.

UDC: 517.94

MSC: Primary 35A05; Secondary 35G15

Received: 28.01.1970


 English version:
Mathematics of the USSR-Izvestiya, 1971, 5:4, 935–953

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024