RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1975 Volume 39, Issue 6, Pages 1274–1283 (Mi im2091)

This article is cited in 1 paper

On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces

A. M. Lukatskii


Abstract: Let $M$ be a homogeneous space of a compact Lie group $K$. We denote by $D_0(M)$ the connected component of the identity in the group of all $C^\infty$-diffeomorphisms of $M$. In this paper it is proved that $D_0(M)$ and some of its closed subgroups are finitely-generated topological groups. It is also proved that the topological $K$-modules arising from the action of the group $K$ on the spaces of $C^k$-sections of homogeneous vector bundles over $M$ are noetherian.
Bibliography: 13 titles.

UDC: 519.46

MSC: Primary 58D05, 57E05; Secondary 55F25

Received: 19.11.1974


 English version:
Mathematics of the USSR-Izvestiya, 1975, 9:6, 1203–1212

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024