RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1975 Volume 39, Issue 6, Pages 1346–1365 (Mi im2095)

This article is cited in 2 papers

Representation of completely $L$-superharmonic functions

M. V. Novitskii


Abstract: An infinitely differentiable function $u(x)$ is said to be completely $L$-superharmonic if it satisfies the condition $(-1)^nL^nu(x)\geqslant0$, $n=0,1,2,\dots$, where $L$ is a second-order elliptic operator and belongs to a bounded domain with a sufficiently smooth boundary. An integral representation is given in this paper for such functions, and a study of their analytic nature is carried out.
Bibliography: 17 titles.

UDC: 517.5

MSC: Primary 31B05, 31B10; Secondary 35J25, 47F05

Received: 16.05.1974


 English version:
Mathematics of the USSR-Izvestiya, 1975, 9:6, 1279–1296

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024