RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1971 Volume 35, Issue 5, Pages 973–990 (Mi im2114)

This article is cited in 17 papers

An effective refinement of the exponent in Liouville's theorem

N. I. Fel'dman


Abstract: For every algebraic number $\alpha$ of degree $n\geqslant3$ there exist effective positive constants $a$ and $C$ such that for any rational integers $q>0$ and $p$ we have
$$ \biggl|\alpha-\frac pq\biggr|>Cq^{a-n}. $$
We also derive an effective boundary of the type $C_1m^{a_1}$ for the solutions of the Diophantine equation $f(x,y)=m$, where $f$ is a form of degree $\geqslant3$.

UDC: 511.6

MSC: 12B15, 10B99, 10F25

Received: 18.02.1971


 English version:
Mathematics of the USSR-Izvestiya, 1971, 5:5, 985–1002

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025