RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1998 Volume 62, Issue 5, Pages 187–206 (Mi im215)

This article is cited in 18 papers

Properties of expansion systems similar to orthogonal ones

T. P. Lukashenko

M. V. Lomonosov Moscow State University

Abstract: We define expansion systems in a Hilbert space that are similar to orthogonal ones, for which an analogue of Parseval's equality, the extremal property of expansion coefficients, and analogues of the Riesz-Fischer theorem and Bessel's identity (estimating the accuracy of approximation) are valid. In the case when the Hilbert space is the Lebesgue space $L^2$ we prove an analogue of the Men'shov–Rademacher theorem on almost everywhere convergence and analogues of the theorems of Orlicz and Tandori on unconditional convergence. We suggest constructions and examples of non-orthogonal expansion systems similar to orthogonal ones.

MSC: 42C15

Received: 09.10.1996

DOI: 10.4213/im215


 English version:
Izvestiya: Mathematics, 1998, 62:5, 1035–1054

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025