RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1969 Volume 33, Issue 3, Pages 677–702 (Mi im2165)

On properties of an incomplete system of functions close to powerfunctions

L. A. Leont'eva


Abstract: On the segment $[0,1]$ we consider a system of functions $\{x^{\lambda_\nu}[1+\varepsilon_\nu(x)]\}$, where the $\varepsilon_\nu(x)$ are small in a definite sense, $\lambda_\nu>0$, $\sum\limits_1^\infty\frac1{\lambda_\nu}<\infty$. We study the functions $y(x)$ which are approximated by linear combinations of functions of this system in $L_p(0,1)$ or in $C[0,1]$ .

UDC: 517.5

MSC: 46Exx, 26A46, 40G10, 40C15

Received: 01.07.1968


 English version:
Mathematics of the USSR-Izvestiya, 1969, 3:3, 643–670

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025