RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1995 Volume 59, Issue 3, Pages 59–76 (Mi im22)

This article is cited in 8 papers

Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic

P. A. Zalesskii

Institute of Technical Cybernetics, National Academy of Sciences of Belarus

Abstract: We prove the analogue of the Kurosh subgroup theorem for closed normal subgroups of free constructions of profinite groups and also corresponding analogues of abstract structural results for closed normal subgroups of more general free constructions of profinite groups (amalgamated free products, HNN-extensions). The structure theorem is used to obtain a description of the congruence-kernel $C$ of the arithmetic lattice $\Gamma$ of the group of $K$-rational points $G=\mathbf G(K)$ of a semisimple connected algebraic group $\mathbf G$ of $K$-rank 1 over a non-Archimedean local field $K$.

MSC: 20E18

Received: 15.04.1994


 English version:
Izvestiya: Mathematics, 1995, 59:3, 499–516

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025