RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1976 Volume 40, Issue 4, Pages 869–892 (Mi im2208)

This article is cited in 6 papers

Inequalities between derivatives in $L_p$-metrics for $0<p\leqslant\infty$

V. N. Gabushin


Abstract: We consider inequalities of the form
\begin{equation} \|f^{(k)}\|_{L_q}\leqslant K\|f\|^\alpha_{L_p}\|\Phi\|^\beta_{L_r}, \tag{1} \end{equation}
where $\Phi(x)$ is an arbitrary majorant of the function $f^{(l)}(x)$, $x\in(-\infty,\infty)$, $k\leqslant l$. The set of parameters $p,q,r,k,l$ for which the inequalities (1) hold is described. Various generalizations of these inequalities are given.
Bibliography: 22 titles.

UDC: 517.5

MSC: Primary 26A86, 26A84, 46E30; Secondary 46E35

Received: 15.07.1974


 English version:
Mathematics of the USSR-Izvestiya, 1976, 10:4, 823–844

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025