RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1973 Volume 37, Issue 1, Pages 135–147 (Mi im2217)

This article is cited in 2 papers

On the mean convergence of Fourier series in Legendre polynomials

V. P. Motornyi


Abstract: In this paper we study the convergence of Fourier series in Legendre polynomials in the space $L_p$, if $1\leqslant p\leqslant4/3$ or $4\leqslant p<\infty$ (i.e. in the case when the Lebesgue constants are unbounded). The fundamental result consists in the fact that with the improvement of the differential-difference properties of the function, the convergence is less affected by the growth of the Lebesgue constant ($1\leqslant p\leqslant4/3$). For functions with sufficiently good differential-difference properties the partial sums of the Fourier–Legendre series give an approximation in the $L_p$ ($1<p\leqslant4/3$) metric of an order as good as the best.

UDC: 517.512.6

MSC: Primary 42A20, 42A56; Secondary 41A50

Received: 10.07.1971


 English version:
Mathematics of the USSR-Izvestiya, 1973, 7:1, 131–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024