RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1969 Volume 33, Issue 6, Pages 1255–1295 (Mi im2226)

This article is cited in 6 papers

Harmonic analysis of functions on semisimple Lie groups. II

D. P. Zhelobenko


Abstract: A theory of harmonic analysis is developed for the class of functions (fundamental and generalized) with compact support on an arbitrary semisimple complex connected Lie group. Duality theorems are proved for the linear topological spaces of finite functions most often encountered in analysis (infinitely differentiable finite functions, finite functions in $L^2$ , and finite generalized functions). All results are analogs of the standard theorems of Paley–Wiener type in harmonic analysis on the line.

UDC: 513.88

MSC: 22E46, 22E10, 46A20, 47Lxx, 42A38, 46F15

Received: 10.02.1969


 English version:
Mathematics of the USSR-Izvestiya, 1969, 3:6, 1183–1217

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025