RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1976 Volume 40, Issue 5, Pages 1128–1142 (Mi im2236)

This article is cited in 1 paper

On a comparison theorem for linear differential equations

T. A. Chanturiya


Abstract: It is proved in the paper that the equation $u^{(n)}=a(t)u$ has property $\mathrm B$ (i.e. each solution of it, in the case of even $n$, either is oscillating or satisfies the condition $|u^{(i)}(t)|\downarrow0$ for $t\to+\infty$ ($i=0,\dots, n-1$) or satisfies the condition $|u^{(i)}(t)|\uparrow+\infty$ for $t\to+\infty$ ($i=0,\dots,n-1$), and in the case of odd $n$, either is oscillating or satisfies the condition $|u^{(i)}(t)|\uparrow+\infty$ for $t\to+\infty$ ($i=0,\dots,n-1$)) if the equation $u^{(n)}=b(t)$ has the property $\mathrm B$ and $a(t)\geqslant b(t)\geqslant0$ for $t\in[0,+\infty)$.
Bibliography: 8 titles.

UDC: 517.9

MSC: 34C10

Received: 04.03.1975


 English version:
Mathematics of the USSR-Izvestiya, 1976, 10:5, 1075–1088

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024