RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1976 Volume 40, Issue 5, Pages 1143–1172 (Mi im2237)

This article is cited in 31 papers

On spaces of Riesz potentials

S. G. Samko


Abstract: In connection with problems which arise in the theory of integral equations of the first kind with a potential-type kernel we investigate the space of Riesz potentials $I^\alpha(L_p)=\{f=K^\alpha\varphi;\varphi\in L_p(R^n),1<p<n/\alpha\}$, where $K^\alpha$ is the Riesz integration operator ($\widehat{K^\alpha\varphi}(x)=|(x)|^{-\alpha}\widehat\varphi(x)$). We give a description of the space $I^\alpha(L_p)$ in terms of differences of singular integrals, establish a theorem on denseness of $C^\infty_0(R^n)$ in $I^\alpha(L_p)$, and indicate a “weight” invariant description of $I^\alpha(L_p)$.
Bibliography: 44 titles

UDC: 517.9

MSC: Primary 46E35; Secondary 45A05

Received: 16.04.1974


 English version:
Mathematics of the USSR-Izvestiya, 1976, 10:5, 1089–1117

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025