RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1973 Volume 37, Issue 2, Pages 251–283 (Mi im2245)

This article is cited in 1 paper

Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$)

A. D. Ustyuzhaninov


Abstract: In this paper we study finite 2-groups in which each abelian normal subgroup is metacyclic, i.e. $SCN_3(2)=\varnothing$. The main result: a finite 2-group with $SCN_3(2)=\varnothing$ is an extension of a metacyclic group by a group isomorphic to a subgroup of the dihedral group of order 8.

UDC: 519.44

MSC: Primary 20D15; Secondary 20F25

Received: 06.03.1972


 English version:
Mathematics of the USSR-Izvestiya, 1973, 7:2, 247–280

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024