RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1973 Volume 37, Issue 2, Pages 308–318 (Mi im2248)

This article is cited in 2 papers

On relative homological dimension of group algebras of locally compact groups

M. V. Sheinberg


Abstract: Let $G$ be a noncompact, locally compact group with an invariant mean, $L_1(G)$ its group algebra, and $I$ the ideal of $L_1(G)$ formed by those functions whose Haar integral is zero.
In this paper it is shown that the (relative) homological dimension of the Banach $L_1(G)$-module $L_1(G)/I$ is infinite. By the same token the (relative) global dimension of the Banach algebra $L_1(G)$ is also infinite. This result is then applied to the study of cohomology groups of a locally compact group with coefficients in Banach $G$-modules.

UDC: 513.88

MSC: Primary 22D15, 18G20, 18G25; Secondary 18H10

Received: 14.02.1972


 English version:
Mathematics of the USSR-Izvestiya, 1973, 7:2, 307–317

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024