RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1973 Volume 37, Issue 2, Pages 344–355 (Mi im2251)

This article is cited in 18 papers

On an extremal problem for polynomials in $n$ variables

Yu. A. Brudnyi, M. I. Ganzburg


Abstract: This article is devoted to an examination of the following extremal problem: find the quantity
$$ C_{k,n}(\lambda,B)=\sup_{|\omega|\ge\lambda}\sup_{P\in\mathscr P_{k,n}(\omega)}\|P\|_{C(B)}, $$
where $B$ is an $n$-dimensional sphere and $\mathscr P_{k,n}(\omega)$ is the totality of polynomials $P$ of degree $k$ in $n$ variables for which $\|P\|_{C(\omega)}\le1$. Here $\omega$ is a measurable set from $B$ and the first sup is taken over all measurable $\omega\subset B$ having measure $|\omega|\ge\lambda$.
The exact order of growth of $C_{k,n}(\lambda, B)$ which respect to $\lambda$ as $\lambda\to0$ is found in this article. Various applications of the results are examined as well.

UDC: 577.514

MSC: Primary 41A10, 41A63; Secondary 41A50

Received: 31.05.1971


 English version:
Mathematics of the USSR-Izvestiya, 1973, 7:2, 345–356

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024