RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1976 Volume 40, Issue 6, Pages 1224–1247 (Mi im2258)

This article is cited in 4 papers

Lie algebras with a subalgebra of codimension $p$

M. I. Kuznetsov


Abstract: All Lie algebras over an algebraically closed field $\mathbf K$, with $\operatorname{char}\mathbf K=p>3$, which have a faithful irreducible representation of degree $p$ are enumerated. Graded Lie algebras $L=\bigoplus^r_{i=-q}L_i$, which have subalgebra $L^-=\bigoplus_{i<0}L_i$ with $\operatorname{dim}L^-=p$ are investigated. Simple finite-dimensional modular Lie algebras which have a maximal subalgebra $\mathscr L_0$ of codimension $p>5$ such that for the corresponding noncontractible filtration with $\mathscr L_1\ne0$ the algebra $\operatorname{Gr}\mathscr L$ is transitive are characterized as deformations of such graded algebras.
Bibliography: 15 titles.

UDC: 519.4

MSC: Primary 17B05; Secondary 17B10

Received: 19.06.1975


 English version:
Mathematics of the USSR-Izvestiya, 1976, 10:6, 1165–1186

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024