RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1972 Volume 36, Issue 2, Pages 450–471 (Mi im2305)

This article is cited in 5 papers

Normal solvability of linear differential equations in the complex plane

Yu. F. Korobeinik


Abstract: The operator $L_nY=A(z)Y'(z)+B(z)Y(z)$, where $A(z)$ and $B(z)$ are square $n$th order matrices, regular in a region $G$ of arbitrary connectivity, and $Y(z)$ is a single-column matrix, regular in $G$, is investigated. The operator $L_nY$ is shown to be normally solvable in the space $A^n(G)$ of single-column matrices regular in $G$, and in certain subspaces of $A^n(G)$, and its index is evaluated.

UDC: 517.9

MSC: Primary 34A20; Secondary 34A30

Received: 31.05.1971


 English version:
Mathematics of the USSR-Izvestiya, 1972, 6:2, 445–466

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025