RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1999 Volume 63, Issue 1, Pages 185–224 (Mi im233)

This article is cited in 6 papers

On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues

S. G. Tankeev

Vladimir State University

Abstract: Let $J$ be an absolutely simple Abelian variety over a number field $k$, $[k:\mathbb Q]<\infty$. Assume that $\operatorname{Cent}(\operatorname{End}(J\otimes\overline k))=\mathbb Z$. If the division $\mathbb Q$-algebra $\operatorname{End}^0(J\otimes\overline k)$ splits at a prime number $l$, then the $l$-adic representation is defined by the miniscule weights (microweights) of simple classical Lie algebras of types $A_m$, $B_m$$C_m$ or $D_m$.
If $S$ is a K3 surface over a sufficiently large number field $k\subset\mathbb C$ and the Hodge group $\operatorname{Hg}(S\otimes_k\mathbb C)$ is semisimple, then $S$ has ordinary reduction at each non-Archimedean place of $k$ in some set of Dirichlet density 1.
If $J$ is an absolutely simple Abelian threefold of type IV in Albert's classification over a sufficiently large number field, then $J$ has ordinary reduction at each place in some set of Dirichlet density 1.

MSC: 14K15

Received: 20.07.1997

DOI: 10.4213/im233


 English version:
Izvestiya: Mathematics, 1999, 63:1, 181–218

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025