RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1972 Volume 36, Issue 4, Pages 814–846 (Mi im2336)

This article is cited in 1 paper

A nowhere dense space of linear superpositions of functions of several variables

B. L. Fridman


Abstract: Let $\mathbf I^3$ be the unit cube of three-dimensional space $R^3$, and let $\Phi_i(x)$, $i=1,\dots,n$, be mappings $\Phi_i\colon\mathbf I^3\to R^2$ of class $C_2$. We prove that the set of functions $F(x)$ on $\mathbf I^3$ which can be represented in the form
$$ F(x)=\sum_{i=1}^n(\chi_i\circ\Phi_i)(x), $$
where the $\chi_i(u_1,u_2)$ are arbitrary continuous functions, $\chi_i\colon R^2\to R$, is nowhere dense in $\mathscr L_2(\mathbf I^3)$.

UDC: 513.88

MSC: 26A72, 46E30

Received: 24.08.1971


 English version:
Mathematics of the USSR-Izvestiya, 1972, 6:4, 807–837

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024