RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1972 Volume 36, Issue 4, Pages 847–889 (Mi im2337)

This article is cited in 18 papers

On the absolute continuity of measures corresponding to processes of diffusion type relative to a Wiener measure

R. Sh. Liptser, A. N. Shiryaev


Abstract: In this work there are given necessary and sufficient conditions for the absolute continuity and equivalence ($\mu_\xi\ll\mu_\omega$, $\mu_\omega\ll\mu_\xi$, $\mu_\xi\sim\mu_\omega$) of a Wiener measure $\mu_\omega$ and a measure $\mu_\xi$ corresponding to a process $\xi$ of diffusion type with differential $d\xi_t=a_t(\xi)\,dt+d\omega_t$.
The densities (the Radon–Nikodým derivatives) of one measure with respect to the other are found. Questions of the absolute continuity and equivalence of measures $\mu_\xi$ and $\mu_\omega$ are investigated for the case when $\xi$ is an Ito process. Conditions under which an Ito process is of diffusion type are derived. It is proved that (up to equivalence) every process $\xi$ for which $\mu_\xi\sim\mu_\omega$ is a process of diffusion type.

UDC: 519.2

MSC: Primary 60J60, 60G30; Secondary 28A40

Received: 17.09.1971


 English version:
Mathematics of the USSR-Izvestiya, 1972, 6:4, 839–882

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024