RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 4, Pages 784–797 (Mi im2392)

Series in the system $\{f(nx)\}_{n=1}^\infty$

A. V. Kasyanchuk


Abstract: This article studies questions of convergence of operators commuting with ergodic endomorphisms, as well as convergence of function series of the form $\sum a_nf(nx)$, where $\{n\}_{n=1}^\infty$ is the sequence of positive integers, $x\in[0,1]$, and $f(x+1)=f(x)$, and series of the form $\sum a_nf(\tau^nx)$, where $\tau$ is an ergodic endomorphism of some algebra $G$, and $f\in L_2(G)$.
Bibliography: 13 titles.

UDC: 517.5

MSC: Primary 42A20, 42C15; Secondary 30B50

Received: 26.01.1984


 English version:
Mathematics of the USSR-Izvestiya, 1986, 27:1, 101–113

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024