RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1970 Volume 34, Issue 3, Pages 515–522 (Mi im2432)

This article is cited in 1 paper

On the motif of a cubic hypersurface

A. M. Shermenev


Abstract: We consider a nonsingular cubic hypersurface $V$ in $\mathbf P^4$. We prove that the motif $\widetilde V$ can be expressed by means of the Tate motif and the motif $(Y,\frac12\operatorname{id}-\frac12c(\gamma))$, where $Y$ is the curve of straight lines on $V$ that pass through a fixed line $l_0\subset V$ and $\gamma$ is an automorphism of $Y$ that leaves no line coplanar with $l_0$ fixed.

UDC: 513.6

MSC: 14Q10, 14J70, 14J50, 14Q15

Received: 11.06.1969


 English version:
Mathematics of the USSR-Izvestiya, 1970, 4:3, 520–526

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025