RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1970 Volume 34, Issue 5, Pages 1159–1172 (Mi im2463)

This article is cited in 1 paper

Orthogonal bases in $L^p$

B. V. Ryazanov, A. N. Slepchenko


Abstract: The following theorem is proved: Given any interval $I\subset[1,2)$, there is an orthonormal system $\{\varphi_n\}$ defined on $[0,1]$ which is a basis in $L^p$ for all $p\in I$, but is not a basis in $L^q$ for any $q\in[1,\infty]\setminus I$. Here $L^\infty=C$.

UDC: 513.88

MSC: 28A20, 46B15

Received: 19.11.1969


 English version:
Mathematics of the USSR-Izvestiya, 1970, 4:5, 1169–1181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025