RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 2, Pages 39–64 (Mi im2486)

This article is cited in 7 papers

On the group of substitutions of formal power series with integer coefficients

I. K. Babenkoa, S. A. Bogatyib

a Universite Montpellier II
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study certain properties of the group $\mathcal J(\mathbb Z)$ of substitutions of formal power series in one variable with integer coefficients. We show that $\mathcal J(\mathbb Z)$, regarded as a topological group, has four generators and cannot be generated by fewer elements. In particular, we show that the one-dimensional continuous homology of $\mathcal J(\mathbb Z)$ is isomorphic to $\mathbb Z\oplus\mathbb Z\oplus\mathbb Z_2\oplus\mathbb Z_2$. We study various topological and geometric properties of the coset space $\mathcal J(\mathbb R)/\mathcal J(\mathbb Z)$. We compute the real cohomology $\widetilde{H}^*\bigl(\mathcal J(\mathbb Z); \mathbb R\bigr)$ with uniformly locally constant supports and show that it is naturally isomorphic to the cohomology of the nilpotent part of the Lie algebra of formal vector fields on the line.

UDC: 512.546.12+515.145.23

MSC: 20E18, 58H10, 13F25, 20E07

Received: 24.11.2006

DOI: 10.4213/im2486


 English version:
Izvestiya: Mathematics, 2008, 72:2, 241–264

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025